
	

Continue

https://feedproxy.google.com/~r/skout/mBVl/~3/GLLx1DTH0VQ/uplcv?utm_term=event+driven+programming+in+vb

Event	driven	programming	in	vb

In	this	lesson	we	demonstrate	how	events	are	utilized	in	the	.NET	Framework	Class	Library	specific	to	Silverlight,	WPF	and	ASP.NET	Web	Forms	applications.	In	all	three	examples,	we	see	how	Visual	Basic	is	generated	by	the	IDE	to	"wire	up"	a	user	action	or	application	event	to	code	that	handles	that	event.	The	point	is	that	there's	a	pattern	to	how
.NET	works	with	events	and	how	events	drive	most	Graphical	User	Interface	based	applications.Download	the	source	code	for	Understanding	Event	Driven	Programming	From	Wikiversity	INTRODUCTION	In	Event-Driven	design	one	prepares	the	program	in	such	a	way	that	certain	actions	are	taken	only	when	an	event	occurs	at	the	user's	initiative	or
otherwise	such	as	click	of	a	button,	or	completion	of	a	time	interval	etc.	Visual	Basic	6.0	offers	a	wide	variety	of	events	to	program.	Some	of	the	events	are	common	for	most	of	the	controls	whereas	some	are	specific	to	individual	controls.	Some	most	common	events	are	as	follows:	In	Visual	Basic,	the	strength	of	any	graphical	or	non-graphical	control
is	measured	by	the	kind	of	special	events	it	provides	to	a	program.	Advantages	of	event-driven	programming:	Event-driven	programming	is	often	termed	as	unstructured	programming	as	it	can	never	be	said	which	piece	of	code	will	get	executed	unless	we	know	which	event	occurred.	But	this	very	fact	contributes	to	the	major	advantage	of	event-
driven	programming.	With	this	approach,	we	can	be	sure	of	some	components	of	a	program	(or	software	for	that	matter)	running	successfully	while	we	work	on	others.	Another	advantage	associated	with	it	is	the	convenience	offered	to	both	the	end-user	and	the	programmer.	Events	can	be	initiated	by	the	user	(like	clicking	a	button).	So	it	gives	the
user	a	feel	of	control	over	the	system.	On	the	other	hand,	programmer	can	put	some	very	crucial	code	for	very	crucial	events	such	as	loading	of	a	form,	where	several	initializations	and	checks	can	be	performed.	References[edit	|	edit	source]	A	Limited	Personal	History	of	VB.NET,	then	WPF,	then	UWP/WinUIWhat	technologies	can	be	leveraged	better
than	both	object-oriented	programming	and	procedural	programming	combined?	Event-driven	programming	with	fully	featured	object-oriented	capabilities	is	the	sort	of	technology	that	can	provide	it	all	and	together.Modern	Events	in	WPF	and	UWPWindows	Forms,	Windows	Presentation	Foundation	(WPF)	and	the	Universal	Windows	Platform	(UWP)
are	each	prime	examples	of	event-driven	programming.	The	object	orientation	of	these	interface	frameworks	is	nothing	revolutionary.	Instead,	what	was	at	just	before	the	turn	of	the	century	fairly	revolutionary	was	the	comprehensive	and	flexible	ability	to	handle	hardware,	software,	and	system	events	in	a	robust	and	flexible	manner.The	Driven
Events	of	1991	to	2002This	event	driven	model	has	been	more	pivotal	to	programming	history	than	ever	object-oriented	models	have	been.	Visual	Basic	initially	began	a	programmers	small	niche	revolution	in	the	year	1991.	Over	a	decade	later,	in	the	year	2002,	Visual	Basic	met	its	end	as	an	independent	platform,	and	VB.NET	emerged	alongside	its
new	alternative	syntax	twin	—	with	a	makeover	into	C++	syntax	style	—	giving	arise	to	the	then	new	C#	language.	This	2002	sudden	entry	into	software	programming	history	predominance	all	happened	upon	the	advent	of	the	first	.NET	Framework,	and	the	release	of	Visual	Studio.NET	in	that	year.Early	Visual	Basic	Event-Driven	ProgrammingIn	the
year	1991,	Visual	Basic	debuted.	This	began	an	upheaval	and	split	in	personal	computer	software	design,	development,	and	engineering.	In	the	years	of	Visual	Basic,	there	was	surely	a	rift	between	conventional	and	more	powerful	C++	software	programming	and	the	radical	and	productive	but	more	restricted	event	driven	ways	of	Visual	Basic.	Visual
Basic	developers	could	prototype	and	bring	a	product	to	readiness	faster	than	ever,	but	were	plagued	by	having	their	software	limited	in	power	and	adjustability.	The	Visual	Basic	programs	were	nice,	but	they	all	had	to	stop	short	of	full	detail	custom	optimization	to	task,	which	C++	programs	could	do.	Both	groups	of	software	programmers	seemed	to
be	glad	of	the	way	they	developed	their	respective	software	titles,	and	also	both	groups	of	software	programmers	seemed	to	have	respectful	envy	for	what	the	“other	side”	could	do	with	those	“other	technologies,”	as	well	as	a	playful	sense	of	humor	about	which	side	of	the	aisle	with	which	a	programmer	was	developing	software.BASIC,	QuickBasic,
and	Visual	Basicin	1990,	Visual	Basic	eclipsed	and	rendered	quickly	obsolete,	its	late	1980s	predecessor,	Quick	Basic.	Many	Integrated	Design	Environment	(IDE)	features	of	Quick	Basic	were	adopted	by	Visual	Basic.	The	language	syntax	of	BASIC	remained	largely	intact,	just	as	it	had	been	for	a	decade	of	interpreted	BASIC	and	compiled	Quick
Basic.	However,	much	was	added	to	the	language	in	terms	of	keywords	and	backing	framework.Event	after	EventEvent	handling	is	the	key	feature	by	which	Visual	Basic	of	old	did	it’s	magic,	it	made	it’s	way	into	Windows	Forms,	then	it	made	its	way	into	Windows	Presentation	Foundation	(WPF),	and	now	it	is	alive	and	well	in	Universal	Windows
Platform	(UWP).Event	Handlers	in	Contemporary	UWP	ProgrammingIn	Visual	Studio	2019	Community,	with	a	UWP	Project	loaded,	the	software	developer	may	select	any	of	a	wide	variety	of	Elements	in	the	XAML	code	window,	and	then	proceed	to	toggle	the	lightning	small	button	on	the	upper-right	of	the	Properties	docked	window	(with	the	tooltip,
upon	hovering,	depicting	“Event	Handlers	for	the	selected	element”).If	this	is	done,	even	for	an	element	of	lesser	properties	such	as	a	Grid	XAML	element,	or	for	just	about	any	other	element,	the	programmer	can	review	the	very	thorough	and	detailed	events	to	which	to	handle	with	functions	in	the	code	behind	.cs	file.	I	believe	that	the	extensive
listing	of	the	many	and	varied	events	which	displays	upon	switching	from	Properties	to	Events	indicates	that	many	programmers,	in	being	much	like	me,	have	not	explored	the	powerful	and	broad	ranging	software	app	behaviors	that	the	UWP	thoroughly	makes	available	to	all	of	us,	primarily	by	way	of	events	and	adept	usage	of	event	handlers.	1	2
ProgrammingLanguages	Programming	Languages	3	Event-Driven	Visual	Programming	Languages	This	lecture	discusses	the	basic	concepts	of	the	event-driven	programming	model.	Event-driven	program	performs	event-handling	function	for	users,	and	every	application	will	consist	of	controls,	which	represent	visual	graphic	user	interfaces,	database,
and	other	system	resources.	4	All	the	paradigms	which	include	imperative,	object-	oriented,	functional,	and	logic	programming	–	are	based	on	a	fundamental	model	of	computation	in	which	the	program	design	predetermines	what	will	occur	when	the	program	is	run.All	the	paradigms	which	include	imperative,	object-	oriented,	functional,	and	logic
programming	–	are	based	on	a	fundamental	model	of	computation	in	which	the	program	design	predetermines	what	will	occur	when	the	program	is	run.	Event-Driven	Programming	Event-driven	programs	do	not	predict	the	control	sequence	that	will	occur;Event-driven	programs	do	not	predict	the	control	sequence	that	will	occur;	They	are	written	to
run	reasonably	to	any	particular	sequence	of	events	that	may	occur	once	execution	beginsThey	are	written	to	run	reasonably	to	any	particular	sequence	of	events	that	may	occur	once	execution	begins	5	In	this	model,	the	input	data	govern	the	particular	sequence	of	control	that	is	actually	carried	out	by	the	program.In	this	model,	the	input	data
govern	the	particular	sequence	of	control	that	is	actually	carried	out	by	the	program.	Event-Driven	Programming	(2)	The	most	widespread	example	of	an	event-driven	program	is	the	GUI	mouse-	and,	windows-driven	user	interface	found	on	most	desktop	and	laptop	computers	in	use	today,	including	web-based	applications.The	most	widespread
example	of	an	event-driven	program	is	the	GUI	mouse-	and,	windows-driven	user	interface	found	on	most	desktop	and	laptop	computers	in	use	today,	including	web-based	applications.	Moreover,	execution	of	an	event-driven	program	does	not	typically	terminate;	such	a	program	is	designed	to	run	for	an	arbitrary	period	of	time,	often
indefinitely.Moreover,	execution	of	an	event-driven	program	does	not	typically	terminate;	such	a	program	is	designed	to	run	for	an	arbitrary	period	of	time,	often	indefinitely.	6	This	is	accomplished	by	VB’s	Integrated	Development	Environment	(IDE),	in	which	a	mouse	is	used	to	"draw"	application	and	use	the	keyboard	to	input	the	code	that	is	to	be
executed.This	is	accomplished	by	VB’s	Integrated	Development	Environment	(IDE),	in	which	a	mouse	is	used	to	"draw"	application	and	use	the	keyboard	to	input	the	code	that	is	to	be	executed.	The	Visual	Basic	VB	provides	massive	support	for	easily	creating	the	user	interface	to	Windows	applications.VB	provides	massive	support	for	easily	creating
the	user	interface	to	Windows	applications.	VB	introduced	was	the	concept	of	an	event-driven	programming	model.VB	introduced	was	the	concept	of	an	event-driven	programming	model.	VB	performs	event-handling	function,	the	only	time	code	will	execute	in	VB	is	in	response	to	an	event!VB	performs	event-handling	function,	the	only	time	code	will
execute	in	VB	is	in	response	to	an	event!	7	The	availability	of	controls	(built-in,	or	controls	you	can	purchase)	is	the	single	biggest	reason	why	VB	has	reached	the	level	of	popularity	that	it	currently	enjoys.The	availability	of	controls	(built-in,	or	controls	you	can	purchase)	is	the	single	biggest	reason	why	VB	has	reached	the	level	of	popularity	that	it
currently	enjoys.	Visual	Controls	Every	Visual	Basic	application	will	consist	of	controls,	which	represent	reusable	graphic	user	interfaces,	database,	and	other	system	resources.Every	Visual	Basic	application	will	consist	of	controls,	which	represent	reusable	graphic	user	interfaces,	database,	and	other	system	resources.	The	VB's	visual	capability	are
embeded	in	these	controls,	which	include	the	intrinsic	controls	and	additional	ActiveX	controls.The	VB's	visual	capability	are	embeded	in	these	controls,	which	include	the	intrinsic	controls	and	additional	ActiveX	controls.	8	Visual	C++:	It	is	virtually	identical	with	Visual	Basic	in	terms	of	the	ease	of	creating	Windows	programs.Visual	C++:	It	is
virtually	identical	with	Visual	Basic	in	terms	of	the	ease	of	creating	Windows	programs.	Other	Visual	Programming	Languages	Delphi:	Based	on	Pascal	programming	language,	designed	to	be	compatible	with	the	controls	that	support	Visual	Basic.Delphi:	Based	on	Pascal	programming	language,	designed	to	be	compatible	with	the	controls	that	support
Visual	Basic.	The	single	best	feature	of	Delphi	is	that	it	creates	completely	stand-alone	EXE	files	-	unlike	Visual	Basic	which	requires	the	distribution	of	a	huge	number	of	supporting	files	for	even	the	smallest	of	applications.The	single	best	feature	of	Delphi	is	that	it	creates	completely	stand-alone	EXE	files	-	unlike	Visual	Basic	which	requires	the
distribution	of	a	huge	number	of	supporting	files	for	even	the	smallest	of	applications.	1	Unit	20:	Event	Driven	Programming	2	Aims	Discuss	what	is	an	event	driven	program	Define	what	is	an	eventLook	into	event	handlers	and	triggers	Discuss	event	loops	Look	at	example	applications	and	languages	Discuss	key	characteristics	of	an	event	driven
program	Discuss	advantages	and	disadvantages	of	event	driven	programming	Castle	College	3	What	are	event	driven	programs?Event	driven	programs	are	typically	used	with	GUI	operating	systems	What	events	are	triggered	by	a	user	using	an	OS?	Clicks	Movements	Keys	Timer	What	other	software	can	you	think	of	that	is	event	driven?
Spreadsheets,	Databases,	the	lists	go	on.....	Castle	College	4	Define	what	an	event	is?	An	event	is	anything	that	happens	to	an	object	when	the	program	is	running.	What	is	an	object?	Controls	are	objects,	what	controls	can	you	think	of?	Form	Buttons	Lists	Pictures	etc......	Castle	College	5	Page	setup	(Microsoft)Castle	College	6	Define	what	an	event
handler	is?Most	objects	have	a	large	variety	of	possible	events,	i.e.	Click,	double	click,	mouse	move	etc...	Event	handler	is	the	subroutine	(procedure)	that	holds	the	code	that	runs	when	an	event	has	occurred.	Private	Sub	btnDisplayMessage_Click()	MsgBox	(“Hello	World”)	End	Sub	Event	triggers	selects	the	appropriate	event	handler	that	determines
what	code	is	executed.	What	part	of	the	code	shows	the	trigger?	Castle	College	7	Event	Challenge	Castle	College	Private	Sub	txtEnterText_Change()MsgBox	("Hello	Life")	End	Sub	Private	Sub	txtEnterText_Click()	MsgBox	("Rock	on")	Private	Sub	btnClose_Click()	MsgBox	("Hello	World")	End	Sub	Private	Sub	btnClose_MouseUp()	MsgBox	("The	King	of
Rock")	Private	Sub	btnMessage_Click()	Private	Sub	btnMessage_MouseMove()	MsgBox	("Hello	People")	Castle	College	8	Event	loops	Event	driven	programming	languages	need	to	have	event	loops.	These	loops	are	needed	to	keep	testing	the	user	interface	to	detect	whether	anything	has	happened,	i.e.	A	mouse	click.	Even	the	programmer	is	not
normally	aware	of	this	kind	of	loop	what	is	part	of	an	event	driven	programs	make	up.	There	are	other	kinds	of	loops	that	the	programmer	will	use,	this	is	the	same	principle,	however	it	is	not	programmed	into	an	application	by	the	programmer	–	it	comes	as	part	of	the	environment.	Castle	College	9	What	are	the	key	characteristics?These	are	the	key
characteristics	of	event	driven	programming	l	languages.	Event	handlers	Trigger	functions	Event	loops	Forms	(which	contain	controls)	Castle	College	10	Programming	languagesA	programming	language	is	used	by	a	programmer	to	develop	event	driven	applications.	Example	event	driven	languages	VB.net	C#	VBA	VB6	Castle	College	11	Some
advantages	of	event	driven	programmingFlexibility	Programmer	has	control	of	where	to	place	code	and	how	to	start	it.	Suitability	for	GUI	An	event	driven	languages	makes	use	of	GUI	controls	to	trigger	Events	Simplicity	of	programming	Visual	programming	makes	application	layout	much	easier	to	achieve.	Code	can	simply	attached	to	various
controls.	Effective	testing	tools	Castle	College	12	A	disadvantage	of	event	driven	programmingCan	be	slow	Loads	of	processing	power	is	taken	due	to	the	need	of	event	loops.	More	processing	is	required	due	to	the	trigger	functions	as	they	match	the	type	of	event	with	the	event	handler.	Castle	College	13	Conclusion	Discussed	what	is	an	event	driven
programDefined	what	is	an	event	Looked	into	event	handlers	and	triggers	Discussed	event	loops	Looked	at	example	applications	and	languages	Discussed	key	characteristics	of	an	event	driven	program	Discussed	advantages	and	disadvantages	of	event	driven	programming	Castle	College	1	|	P	a	g	e	BBIT	BBIT	3206	:	EVENT	DRIVEN	PROGRAMMING
AUTHOR	:	Njuguna	Patrick	Phone:0721238570	email	:	rpwnjuguna@gmail.com	2	|	P	a	g	e	Course	content	INTRODUCTION		The	Visual	Basic	6	environment		Defining	terms		Creating	a	Visual	Basic	Project		Practice	project	-	Building	a	Football	Scoreboard	APPLICATION	DEVELOPMENT		Improving	the	VB	application		Using	a	step-by-step	approach	
Writing	a	VB	procedure		Calling	procedures	BUILDING	BLOCK	OF	VB	6		Using	the	Visual	Basic	6	code	editor		Adhering	to	programming	standards		Data	types,	variables	and	constants	in	Visual	Basic		Using	operators		Control	structures	-	IF...THEN,	Select	Case,	DO...LOOP,	FOR...NEXT		Practice	assignment	-	Upgrading	the	Scoreboard	DESIGNING
VB	APPLICATION		Designing	the	Visual	Basic	Application		Working	with	users		Guiding	principles		Choosing	a	Visual	Basic	interface	style	DEVELOPING	USER	INTERFACE		Defining	the	Visual	Basic	Form		Standard	controls:	Picture,	Frame,	CommandButton,	Label,	TextBox,	CheckBox,	etc.		Visual	Basic	practice	assignment:	Creating	a	Payroll	Form	
Arrays		More	controls:	ListBox,	ComboBox		Properties	and	Methods	of	objects	in	Visual	Basic		Building	a	file	search	application:	DriveListBox,	DirListBox,	FileListBox		Building	a	Menu		Debugging	Visual	Basic	code	5	|	P	a	g	e	In	a	VB	project,	the	processes	that	occur	have	to	be	associated	with	events.	An	event	is	something	that	happens	-	the	user
clicks	on	a	button,	a	form	is	opened,	the	result	of	a	calculation	is	too	large.	The	operation	is	event-driven	because	everything	that	executes	does	so	as	the	result	of	some	kind	of	event.	The	role	of	the	programmer	is	to	anticipate	the	events	and	to	write	the	code	that	will	be	executed	when	the	event	occurs.	A	VB	application	is	interactive	in	the	sense	that
the	user	is	constantly	interacting	with	the	program.	The	user	inputs	a	Customer	Id,	the	program	checks	the	Id	in	the	database	and	immediately	brings	up	the	customer's	file	or	displays	a	message	that	the	particular	Id	is	invalid.	Project	description	We	want	to	create	a	Scoreboard	for	a	football	game	(there	it	is	already!)	between	the	Giants	and	the
Redskins.	To	begin	with	the	simplest	task	we	will	only	count	the	touchdowns	and	display	appropriate	messages.	Please	note:	although	we	will	create	a	complete	functional	Project	with	controls	and	code	and	so	on,	the	purpose	of	this	exercise	is	to	show	what	can	be	done.	In	the	following	lessons	we	will	be	explaining	scripts	and	the	use	of	controls	in	a
lot	more	detail.	If	you	study	this	example	you	should	be	able	to	relate	it	to	what	you	already	know	of	programming	and	judge	whether	this	tutorial	will	be	easy	or	hard	for	you	to	do.	1.2	Creating	the	Project	First	thing	to	do	is	to	create	a	Directory	where	you	will	store	all	your	VB	Projects.	Call	it	VBApps,	for	example.	Then	start	VB.	The	first	screen	will
ask	whether	you	want	to	open	a	new	project	or	an	existing	one	-	it's	obviously	a	new	one	and	it	will	be	a	Standard	EXE.	Then,	maximize	all	the	windows	(it's	easier	to	work	with	-	some	of	the	examples	in	the	tutorial	had	to	be	reduced	for	the	sake	of	the	presentation).	Now,	save	your	project.	It	will	first	ask	you	to	save	the	form	-	call	it	Score.frm	-	and
then	the	Project	-	call	it	Scorebrd.vbp.	From	now	on,	do	File-->Save	Project	very,	very	frequently.	Pe	ed	Bile	Edit	Yiew	Project	Format	Debug	Bun	Query	Diagram	Tools	Add-Ins	Window	Help	|s-4-	Alero	te	meelool,	yw	RR	aS	e	ea	wl	[x]	ESE	GE	i	es	el	ht	‘	osoft	Select	Ta	Always	Sta	for	now	Alphabetic	|	ce	Actives	EXE	Active	DLL	Activex	YB	Application
Control	Wizard	Se	Se	Se	Se	YE	Wizard	=	YB	Working	Data	Project	IIS	Application	Addin	Manager	=	Model	Editi...	rae	ra	a	cy	&	ra	~~	s	Cancel	Help	[~	Don't	show	this	dialog	in	the	future	6|Page	7	|	P	a	g	e	Before	you	start	to	build-up	the	form,	it	will	make	it	easier	if	you	change	the	color	of	the	form.	Otherwise	you	will	be	working	with	grey	controls
on	a	grey	background.	To	change	the	color,	just	click	anywhere	on	the	form,	go	to	the	properties	window,	find	the	property	called	BackColor	and	change	it	to	the	standard	Window	background	(teal)	or	to	any	color	you	want	in	the	palette.	In	our	first	example	we	will	need	6	labels	and	2	command	buttons.	Each	one	of	these	objects	that	you	put	on	a
Form	is	called	a	control.	To	get	a	control	you	go	to	the	Toolbox,	click	on	the	control	you	want,	come	back	to	the	Form	and	click	and	drag	the	control	to	the	size	and	position	you	want.	Position	the	controls	somewhat	like	in	the	diagram	below.	10	|	P	a	g	e	If	you	Run	the	application	at	this	point,	you	should	see	your	Form	appear,	just	the	way	you	created
it.	However	if	you	click	on	any	of	the	controls,	absolutely	nothing	happens!	There	are	events	that	occur;	the	form	opens,	a	button	is	clicked,	etc.	But,	there	is	nothing	that	tells	the	form	what	to	do	when	it	sees	an	event.	That	is	why	we	have	to	write	code,	also	called	script.	11	|	P	a	g	e	To	switch	between	the	Code	window	and	the	Form	window,	use	the
buttons	just	over	the	Project	Explorer	window	(diagram	on	the	left).	Once	in	the	Code	window,	you	have	the	option	of	seeing	all	the	code	for	the	Project	or	the	code	for	one	event	at	a	time.	Use	the	buttons	in	the	lower	left-hand	corner	(diagram	on	the	right).	To	select	the	object	and	the	event	you	wish	to	code,	use	the	two	Listboxes	at	the	top	of	the
Code	window.	The	one	on	the	left	for	the	object	and	the	one	on	the	right	for	the	event.	Start	with	General	...	Declarations	and	then	Form	...	Load,	etc.	At	this	point	you	might	want	to	download	the	sample	program	and	study	it.	In	the	following	lessons	we'll	add	functionality	to	the	exercice	and	we'll	explain	what	the	code	means.	But	for	the	moment,	a
good	exercice	would	be	to	write	part	of	the	code	and	then	try	to	figure	out	how	to	improve	certain	aspects	of	the	program.	12	|	P	a	g	e	Now	we	can	Run	it	and	see	something	happen.	When	the	Form	loads,	it	will	initialize	the	fields	that	we	specified	in	the	code.	Now	code	the	Command1	button	and	Run	it	to	see	the	result.	15	|	P	a	g	e	A	second
improvement	Another	thing	we	usually	need	in	a	program	is	a	re-initialize	button.	After	one	loop	of	the	program,	in	this	case	one	match,	we	usually	want	to	clear	all	the	data	and	start	over.	For	that	we'll	create	a	Clear	button	on	the	form.	16	|	P	a	g	e	But,	we'll	notice	that	what	we	do	with	the	Clear	button	is	in	fact	the	same	thing	we	do	when	we	load
the	form	in	the	first	place.	So,	we'll	use	the	procedure	technique	to	simplify	the	code.	17	|	P	a	g	e	1.3	Writing	code	The	Code	Editor	As	we	saw	in	the	previous	lesson,	getting	to	the	Code	Editor	is	as	simple	as	hitting	the	proper	button.	You	may	have	discovered	that	you	can	also	call-up	the	Editor	by	double-clicking	on	an	object.	It	is	also	possible	to
select	"View	code"	with	the	right	mouse	button.	You	will	note	that	the	Editor	has	all	the	functions	of	a	text	editor	and	then	some.	The	most	commonly	used	functions	will	be	Cut	...	Copy	...	Paste	which	you	can	call	from	the	Menu,	from	the	Toolbar	or	from	the	right	mouse	button.	You	also	have	access	to	the	usual	Find	and	Replace	functions	Getting
help	There	is	a	lot	of	documentation	available	on	VB.	There	is	so	much,	in	fact,	that	it's	easy	to	get	lost	in	it.	However,	the	on-line	Help	available	from	the	Menu	should	be	used	regularly.	Very	often	just	doing	a	search	on	a	word	in	particular	will	be	sufficient	to	get	you	out	of	a	jam.	If	you	want	to	go	into	more	detail	check	out	the	Contents	part	of
MSDN	(Microsoft	Developers'	Network)	and	surf	through	it.	Writing	code	VB	is	not	very	particular	about	presentation	-	spaces,	indents,	lower	case	or	upper	case,	it	doesn't	make	too	much	difference	to	the	compiler.	But	it	may	make	a	whole	lot	of	difference	to	the	programmer	who	has	to	maintain	your	code	in	2	years,	after	you've	moved	up	to
President.	Apply	"Best	Programming	Practices"	When	you	work	with	RAD	(Rapid	Application	Development)	tools	like	VB	in	a	graphical	interface	environment,	you	become	more	than	just	a	programmer,	a	writer	of	code.	You	are	a	developer.	We	will	cover	that	in	the	next	lesson.	But	at	the	moment,	you	are	still	a	Programmer.	And	unless	you	are
developing	an	application	for	your	own	personal	use,	that	nobody	else	will	see,	you	have	to	think	of	the	environment,	of	the	team	you	are	working	with.	"No	man	(or	woman)	is	an	island!"	Especially	when	it	comes	to	programming.	The	code	you	write	may	have	to	be	checked	by	an	Analyst.	It	will	have	to	go	through	testing.	It	may	have	to	be	modified
by	other	team	members	and	it	almost	certainly	will	go	through	modifications,	maybe	several	times,	in	the	months	and	years	ahead	when	you	probably	won't	be	around	to	defend	yourself.	"The	evil	that	men	do	lives	after	them...".	You	do	not	write	code	for	the	VB	compiler.	You	write	it	for	other	developers	and	programmers.	What	you	want	others	to	say
behind	your	back	is:	"That	Jane	was	blindingly	efficient,	brilliant,	a	genius	with	comments	..."	20	|	P	a	g	e	numbers)	Variant	(with	characters)	22	bytes	+	string	length	Same	range	as	for	variable-length	String	User-defined	(using	Type)	Number	required	by	elements	The	range	of	each	element	is	the	same	as	the	range	of	its	data	type.	In	all	probability,
in	90%	of	your	applications	you	will	use	at	most	six	types:	String,	Integer,	Long,	Single,	Boolean	and	Date.	The	Variant	type	is	often	used	automatically	when	type	is	not	important.	A	Variant-type	field	can	contain	text	or	numbers,	depending	on	the	data	that	is	actually	entered.	It	is	flexible	but	it	is	not	very	efficient	in	terms	of	storage.	2.2	Declaring
variables	Declaring	a	variable	means	giving	it	a	name,	a	data	type	and	sometimes	an	initial	value.	The	declaration	can	be	explicit	or	implicit.	An	explicit	declaration:	variable	is	declared	in	the	Declarations	Section	or	at	the	beginning	of	a	Procedure.	An	explicit	declaration	looks	like:	Dim	MyNumber	As	Integer	Now	the	variable	MyNumber	exists	and	a
2-byte	space	has	been	reserved	for	it.	An	implicit	declaration:	the	variable	is	declared	"on	the	fly",	its	data	type	is	deduced	from	other	variables.	For	example:	Dim	Total1	As	Integer	'Explicit	declaration	Dim	Total2	As	Integer	'Explicit	declaration	Total3	=	Total1	+	Total2	'Implicit	declaration	Total3	is	not	formally	declared	but	is	implied,	it	is	"arrived
at"	from	the	other	declarations.	It	is	never	a	good	idea	to	have	implicit	declarations.	It	goes	against	the	rules	for	clarity,	readability	and	ease	of	use	of	the	code.	To	make	sure	that	this	rule	is	followed,	start	the	Declarations	with	the	Option	Explicit	clause.	This	tells	the	compiler	to	consider	implicit	declarations	as	errors	and	forces	the	programmer	to
declare	everything	explicitly.	Other	examples	of	declarations:	Dim	MyName	As	String	Dim	StudentDOB	As	Date	Dim	Amount5,	Amount6,	Amount7	In	the	last	example	the	type	assigned	to	each	variable	will	be:	Variant.	It	is	the	default	type	when	none	is	21	|	P	a	g	e	specified.	There	can	be	multiple	explicit	declarations	in	a	statement:	Dim	EmpName	As
String,	SalaryMonth	As	Currency,	SalaryYear	As	Currency	In	this	final	example,	what	are	the	types	assigned	to	the	three	variables:	Dim	Amount1,	Amount2,	Amount3	As	Single	All	Single-precision	floating	point,	you	say.	Wrong!	Only	Amount3	is	Single.	Amount1	and	Amount2	are	considered	Variant	because	VB	specifies	that	each	variable	in	a
statement	must	be	explicitly	declared.	Thus	Amount1	and	Amount2	take	the	default	data	type.	This	is	different	from	what	most	other	languages	do.	2.3	Constants	A	constant	is	a	value	that	does	not	change	during	the	execution	of	a	procedure.	The	constant	is	defined	with:	Const	ValuePi	=	3.1416	The	Scope	of	variables	The	term	Scope	refers	to
whether	the	variable	is	available	outside	the	procedure	in	which	it	appears.	The	scope	is	procedure-level	or	module-level.	A	variable	declared	with	Dim	at	the	beginning	of	a	procedure	is	only	available	in	that	procedure.	When	the	procedure	ends,	the	variable	disappears.	Consider	the	following	example:	Option	Explicit	Dim	Total2	As	Integer	Private
Sub	Command1_Click	()	Dim	Total1	As	Integer	Static	Total3	As	Integer	Total1	=	Total1	+	1	Total2	=	Total2	+	1	Total3	=	Total3	+	1	End	Sub	Private	Sub	Command2_Click	()	Dim	Total1	As	Integer	Total1	=	Total1	+	1	Total2	=	Total2	+	1	Total3	=	Total3	+	1	End	Sub	Every	time	Button1	is	clicked,	Total1	is	declared	as	a	new	variable	during	the
execution	of	that	clicked	22	|	P	a	g	e	event.	It	is	a	procedure-level	variable.	It	will	always	stay	at	1.	The	same	for	the	Button2	event:	Total1	is	a	new	variable	in	that	procedure.	When	the	procedure	ends,	Total1	disappears.	Total2	is	declared	in	the	Declarations	section.	It	is	a	module-level	variable,	meaning	it	is	available	to	every	control	in	this	Form.
When	Button1	is	clicked,	it	increments	by	1	and	it	retains	that	value.	When	Button2	is	clicked,	Total2	is	incremented	from	its	previous	value,	even	if	it	came	from	the	Button1	event.	Total3	shows	another	way	of	retaining	the	value	of	a	local	variable.	By	declaring	it	with	Static	instead	of	Dim,	the	variable	acts	like	a	module-level	variable,	although	it	is
declared	in	a	procedure.	Another	scope	indicator	that	you	will	see	when	you	study	examples	of	code	is	Private	and	Public.	This	determines	whether	a	procedure	is	available	only	in	this	Form	(module)	or	if	it	is	available	to	any	module	in	the	application.	For	now,	we	will	work	only	with	Private	procedures.	2.4	Operators	2.4.1	Mathematical	and	Text
operators	Operator	Definition	Example	Result	^	Exponent	(power	of)	4	^	2	16	*	Multiply	5	*	4	20	/	Divide	20	/	4	5	+	Add	3	+	4	7	-	Subtract	7	-	3	4	Mod	Remainder	of	division	20	Mod	6	2	\	Integer	division	20	\	6	3	&	String	concatenation	"Joan"	&	"	"	&	"Smith"	"Joan	Smith"	Note	that	the	order	of	operators	is	determined	by	the	usual	rules	in
programming.	When	a	statement	includes	multiple	operations	the	order	of	operations	is:	Parentheses	(),	^,	*,	/,	\,	Mod,	+,	-	2.4.2	Logical	operators	Operator	Definition	Example	Result	=	Equal	to	9	=	11	False	>	Greater	than	11	>	9	True	25	|	P	a	g	e	Do	While	condition	statements	Loop	First,	the	condition	is	tested;	if	condition	is	True,	then	the
statements	are	executed.	When	it	gets	to	the	Loop	it	goes	back	to	the	Do	and	tests	condition	again.	If	condition	is	False	on	the	first	pass,	the	statements	are	never	executed.	3.2.2	For...Next	When	the	number	of	iterations	of	the	loop	is	known,	it	is	better	to	use	the	For...Next	rather	than	the	Do...Loop.	For	counter	=	start	To	end	statements	Next	1)	The
counter	is	set	to	the	value	of	start.	2)	Counter	is	checked	to	see	if	it	is	greater	than	end;	if	yes,	control	passes	to	the	statement	after	the	Next;	if	not	the	statements	are	executed.	3)At	Next,	counter	is	incremented	and	goes	back	to	step	2).	More	will	be	covered	on	Control	strucures	as	it	becomes	necessary	in	upcoming	lessons.	Meanwhile,if	you	want	to
know	more,	consult	the	VB	Language	Reference.	Assignment	To	practise	your	coding	and	editing	skills,	try	modifying	the	Football	example	by	adapting	it	for	different	sports.	For	example,	in	American	football,	which	is	similar	to	rugby,	there	are	4	different	ways	to	score,	as	shown	here:	Touchdown	6	points	Field	goal	3	points	2-point	Convert	or	Safety
2	points	Convert	1	point	26	|	P	a	g	e	Chapter	4	Designing	Application	Introduction	When	you	start	to	work	on	a	VB	Project	you	are	no	longer	just	a	programmer	-	you	are	now	a	developer.	You	will	have	to	get	much	more	involved	in	the	whole	design	process.	Unless	you	are	designing	an	application	for	your	own	use	you	will	have	to	work	with	a	team	of
specialists	including,	but	not	limited	to,	users,	analysts,	GUI	designer,	programmers,	testers,	network	specialist,	webmaster	and	marketing	people.	The	whole	process	is	iterative	-	do	part	of	it,	check	it,	get	input,	go	back	and	correct	it,	do	the	next	part,	and	so	on.	Nobody	expects	you	to	do	a	whole	project	in	one	fell	swoop	-	it	would	probably	be	a
disaster	if	you	did	do	it	that	way.	The	importance	of	Users	Any	project	that	you	develop	has	to	involve	Users.	They	are	the	people	who	will	sit	in	front	of	your	interface	for	eight	hours	a	day	and	decide	if	they	like	it	or	not.	If	they	don't	like	it,	no	matter	how	efficient	the	code	and	how	many	millions	of	dollars	were	spent	developing	it,	they	will	find	ways
to	sabotage	it.	Get	users	involved	from	the	start.	If	you	are	developing	a	product	to	specs,	that	is	to	be	sold	to	some	client	eventually,	there	has	to	be	someone	who	knows	what	that	eventual	client	needs.	Find	a	typical	user	of	the	product	to	use	as	a	sounding	board.	Remember:	you	are	just	the	developer;	no	matter	how	cool	you	think	it	would	be	to	use
all	purple	text	on	orange	backgrounds,	it	is	the	user	who	will	tell	you	what	is	cool	and	what	is	not.	As	you	develop	more	and	more	parts	of	the	application,	run	them	by	the	user	to	check	for	accuracy,	completeness,	clarity,	etc.	Here's	an	example	of	how	to	design	for	clarity.	Given	that	01/02/03	is	a	date,	what	date	is	it?	If	you	are	an	American,	you
probably	automatically	assume	that	it	is	January	2nd,	2003.	If	your	user	is	French,	however,	he	would	assume	that	it	is	February	1st,	2003.	And	if	you	are	working	with	this	Professor,	who	has	a	very	definite	opinion	on	the	subject,	he	would	say	that	it	is	February	3rd,	2001	and	should	always	be	written	as	2001-02-03.	If	all	your	forms	are	designed	as:
"Enter	date"	with	a	blank	box	beside	it,	you	are	headed	for	trouble.	Program	design	today	is	a	race	between	software	engineers	striving	to	build	bigger	and	better	idiot-proof	programs,	and	the	Universe	trying	to	produce	bigger	and	better	idiots.	So	far,	the	Universe	is	winning.	--	Rich	Cook	That's	just	a	joke,	by	the	way.	Most	users	are	not	idiots.
Sometimes	they	appear	confused	because	they	are	trying	to	solve	the	problem	and	they	can't	figure	out	how.	But	that's	not	their	job.	Their	job	is	to	explain	clearly	what	it	is	they	need.	Your	job	is	to	figure	out	how	to	provide	it.	Don't	underestimate	users.	Be	patient,	be	understanding	without	being	condescending	and	be	humble.	There's	a	lot	of	things
that	the	user	knows	how	to	do	that	you	don't.	27	|	P	a	g	e	4.1	Creating	the	User	Interface	The	user	interface	that	you	design	is	the	most	visible	and	perhaps	the	most	important	part	of	the	application.	The	term	commonly	used	for	this	type	of	interface	is:	GUI	(Graphical	User	Interface).	It's	pronounced	"goo-wee",	not	"guy".	It	is	graphical	because	it
consists	of	buttons,	menus,	icons,	etc.	An	example	of	a	non-GUI	is	DOS	(remember	that?)	where	everything	is	text.	User	interface	refers	to	the	fact	that	it	is	the	part	of	the	application	between	the	user,	in	front	of	the	screen,	and	the	code	behind	the	screen.	How	well	the	user	can	interact	with	the	code	depends	on	the	quality	of	the	interface.	Guiding
principles		The	user	is	in	control.	The	user	must	feel	he	is	in	charge	of	the	application.	He	must	have	a	certain	amount	of	control	over	such	things	as	window	size,	window	position,	choice	of	fonts,	etc.	There	should	definitely	be	a	"Preferences"	item	in	the	menu.		Consistency	is	maintained	throughout	the	application.	The	user	can	move	to	any	part	of
the	application	and	not	have	to	re-learn	how	things	work.	Consistency	in	the	choice	of	icons,	in	date	formats,	in	error	messages	means	that	the	user	can	concentrate	on	the	work.	As	much	as	possible,	the	application	should	be	consistent	with	Windows	standard.	For	example,	"Move	to	the	Recycle	Bin"	is	different	from	"Delete"	-	the	user	has	come	to
expect	that	an	item	in	the	Recycle	Bin	can	be	recovered	if	need	be.		Application	should	be	"forgiving",	or	"fault-tolerant".	Users	will	make	mistake.	A	single	error	should	not	bring	the	application	crashing	to	the	floor.	If	there	is	no	room	for	errors,	users	will	be	afraid	to	experiment,	to	discover	on	their	own	how	to	do	things.	It	will	slow	the	learning
process	considerably.		Always	supply	feedback.	The	user	should	always	know	that	something	is	going	on,	especially	if	it's	in	the	background	and	may	take	several	minutes	to	run.	Display	an	hourglass	or	a	progress	meter	or	a	status	bar	so	that	the	user	doesn't	start	to	hit	keys	at	random	to	get	something	to	happen.	It	only	takes	a	few	seconds	of
inactivity	for	the	user	to	get	frustrated	and	think	that	the	program	is	"hanging".		Don't	neglect	esthetics.	The	visual	aspect	is	important.	The	environment	should	be	pleasing	to	the	eye.	The	presentation	style	should	help	in	understanding	the	information	presented.		Interface	should	be	simple	without	being	simplistic.	There	should	be	a	balance
between	simplicity	and	functionality.	Popup	menus,	for	example,	allow	you	to	increase	the	functionality	without	having	to	encumber	the	screen	with	all	kinds	of	details	which	are	not	used	95%	of	the	time.	On	the	importance	of	language	Throughout	the	project	you	are	going	to	be	doing,	you	should	give	some	thought	to	the	quality	of	the	language	used.
As	a	teacher	of	technology,	I	am	constantly	defending	the	compulsory	language	courses	included	in	the	curriculum.	I	have	to	point	out	that	your	mastery	of	the	language,	or	lack	thereof,	projects	30	|	P	a	g	e	Frame	&	PictureBox	When	you	want	to	group	several	controls	together	-	name	and	address,	for	example	-	you	use	a	Frame.	The	frame	backcolor
can	be	the	same	as	the	form's	and	only	the	frame	borders	will	be	obvious,	or	it	can	be	a	different	color	and	stand	out.	You	create	the	frame	before	the	controls.	When	you	create	controls	in	a	frame,	they	are	tied	to	the	frame	and	move	with	it.	The	frame	caption	is	the	text	that	appears	at	the	top	of	the	frame	-	you	use	it	to	define	the	group.	The
PictureBox	is	like	a	Label	with	a	picture	in	it	instead	of	text.	The	Picture	property	determines	the	name	of	the	file,	.BMP	or	.GIF,	that	will	be	displayed.	It	can	be	used	for	a	company	logo,	etc.	Top	31	|	P	a	g	e	TextBox	&	CommandButton	The	TextBox	is	like	a	Label	but,	it	is	used	to	input	data	into	the	program.	The	data	typed	in	is	in	the	Text	property	of
the	control.	When	the	program	is	Run,	only	the	controls	that	can	be	manipulated	will	be	activated.	For	example,	if	the	form	contains	3	Labels,	3	TextBoxes	and	3	Buttons,	when	it	is	Run,	the	cursor	will	not	stop	at	the	labels.	When	the	user	hits	the	Tab	key,	the	cursor	will	go	to	the	first	TextBox	or	Button	-	not	necessarily	the	first	one	on	the	form	but,
the	first	one	that	was	created.	That	is	called	the	Tab	order	and	you	have	to	specify	it.	On	the	form	there	is	only	one	control	at	any	given	time	that	has	the	cursor	on	it	-	it	is	said	to	have	Focus.	If	you	type	data,	the	control	with	Focus	will	receive	it.	You	change	the	Focus	with	Tab	or	by	clicking	on	a	different	control.	Up	until	now	we	haven't	bothered
with	the	names	of	controls	(the	Name	property).	Once	we	start	to	code,	however,	it	does	become	important.	There	are	all	kinds	of	occasions	in	code	where	you	have	to	call	upon	a	certain	control.	It	can	get	very	confusing	when	your	12	buttons	are	called	Command1...Command12.	What	did	Command7	do,	again?	Give	each	control	a	name	(except	for
titles,	etc.	that	you	never	refer	to)	so	that	you	will	be	able	to	identify	it	easily.	It	is	recommended	that	you	use	a	prefix	when	assigning	a	name;	cmd	for	a	CommandButton,	lbl	for	a	Label,	txt	for	a	TextBox.	Thus,	txtNumber	where	you	input	the	value	can	be	distinguished	from	lblNumber	where	you	display	the	result.	The	CommandButton	is	used	to
initiate	actions,	usually	by	clicking	on	it.	The	Caption	property	determines	the	text	to	display	on	the	face	of	the	button.	The	Default	property,	if	set	to	true,	means	that	the	button	will	be	activated	(same	as	Clicked)	if	the	key	is	hit	anywhere	in	the	form.	If	Cancel	is	set	to	True,	the	button	will	be	activated	from	anywhere	in	the	form	by	the	key.	32	|	P	a	g
e	Hopefully,	you	have	now	run	this	program	several	times,	each	time	you	added	a	new	control,	in	fact.	Admittedly,	nothing	much	happened	except	to	confirm	that	the	controls	were	appearing	in	the	right	place	on	the	form.	Here	now	is	an	example	of	the	code	we	could	write	to	perform	simple	tasks:	input	name	and	city	and	display	the	information	in	a
label	when	the	Continue	button	is	clicked.	The	Exit	button	will	end	execution	of	the	program	and	the	Cancel	button	(or	the	Esc	key)	will	clear	the	fields.	35	|	P	a	g	e	checking	the	content	of	.Value.	It	is	fairly	standard	procedure,	especially	with	Option	buttons,	to	ensure	that	at	least	one	button	has	been	selected	and	to	display	an	error	message	if	it	has
not.	36|	Page	'The	MsgBox	function	allows	you	to	display	‘a	message	window	as	a	result	of	some	error.	'See	"MsgBox	function"	in	Help	for	details.	‘SetFocus	is	a	Method	that	lets	you	return	Focus	‘(the	cursor)	to	a	specified	object,	in	this	case	‘one	of	the	option	buttons,	after	an	error	check.	'See	"SetFocus	Method"	in	Help.	‘Check	if	O5	was	selected	-
if	no	‘display	error	message:	if	yes,	get	its	name.	If	opt_win9s.Value	=	False	_	And	opt_winnt.Value	=	False	Then	MsgBox	("You	wust	select	an	Operating	system")	opt_windé.	SetFocus	Else	If	opt_winS6.Value	=	True	Then	OsName	=	"Windows	35"	Else	OsName	=	"Windows	NT"	End	If	End	If	‘Verify	which	accessories	were	checked	in	order	‘to	build
output	label.	If	ck_printer.Value	=	1	Then	AccPr	=	"	printer	End	If	Tf	ck	moniter.	Value	=	1	Then	Accin	=	"	monitarc™	End	If	Tf	ck_modem.	Value	=	1	Then	AccMod	="	moder"	End	If	Tf	ck_nic.Value	=	1	Then	AccNic	=	"	NIC"	End	If	lb_msg.Caption	=	"You	selected	a	"	©	PrName	_	e	"with	"	©	OsName	¢	Chr(i3)	_	e	"and	accessories:	"	s	AccoPr	€	deotn
_	&	decMod	©	aceNic	‘If	you	want	to	force	a	line	change	in	a	Label,	‘insert	a	Chr(13)	-the	carriage	return	character—	‘in	the	string.	End	Sub	37	|	P	a	g	e	Assignment	3	Create	the	Payroll	form	shown	below.	Number	of	hours	must	be	entered	as	well	as	the	appropriate	rate.	Gross	salary	=	rate	*	hours.	Net	salary	=	gross	salary	-	deductions.	LESSON	5	-
More	standard	controls	Tuesday,	August	02,	2011	Working	with	arrays	40	|	P	a	g	e	It	is	sometimes	difficult	to	distinguish	an	object's	Properties	and	its	Methods.	In	the	example	above	we	used	lst_team.AddItem.	What	is	AddItem?	It	is	a	Method.	How	do	I	know?	Well,	to	tell	them	apart,	think	of	grammar.	A	property	is	a	characteristic,	something	that
the	object	is,	a	color,	a	size	-	it	is	like	an	adjective.	A	Method	is	an	action,	something	that	it	does,	in	fact,	a	verb.	When	you	see	object.something_descriptive,	it	is	a	Property.	When	you	see	object.some_action,	it	is	a	Method.	In	the	example	shown,	AddItem	is	a	Method	because	it	is	the	action	of	adding	items	to	the	ListBox.	If	you	wanted	to	remove	an
item	from	the	list	in	code,	there	is	a	RemoveItem	Method	for	the	ListBox.	lst_team.RemoveItem	2	would	remove	the	3rd	team	-	remember	that	it	starts	at	0.	When	the	Form	opens,	it	will	load	the	list	in	Form_load	before	the	ListBox	is	displayed.	If	there	are	too	many	items	for	the	space	allocated	to	the	ListBox,	it	will	create	a	vertical	scroll	bar.	When
the	user	selects	one	of	the	teams	from	the	list,	we	have	to	have	a	way	of	capturing	that	information	in	a	variable.	That	is	done	with	the	Text	property	of	the	ListBox:	TeamName	=	lst_team.Text	ComboBox	The	ComboBox	is	called	that	because	it's	a	combination	of	a	ListBox	and	a	TextBox.	It	has	the	advantage	over	the	ListBox	of	not	taking	up	space
until	it	is	actually	used	which	means	that	it	makes	it	easier	to	position	on	the	Form.	But	the	combo	has	the	disadvantage,	sort	of,	that	the	user	can	enter	his	own	information,	in	addition	to	what	is	in	the	list.	This	may	make	data	validation	harder	because	the	choices	are	not	limited.	When	you	want	to	force	the	user	to	make	a	choice	only	among	the
specified	items,	use	a	ListBox,	even	if	it	is	a	bit	more	awkward.	If	the	user	is	allowed	to	override	the	choices,	uses	a	ComboBox.	As	in	the	ListBox,	use	the	Text	property	to	get	the	information	input.	Label3.Caption	=	cbo_position.Text	41|Page	Player's	Name	Picture	[RedGresn	Player's	Team	Position	Centre	Guard	Quarterback	Receiver	[Tackle	Option
Explicit	Private	Sub	Form	Load()	‘When	the	form	loads,	the	first	thing	‘we	do	is	to	assign	the	names	to	the	‘list	of	teams	lst_team.	AddItem	"Giants"	lst_team.AddItem	"Redskins"	lst_team.AddItem	"Cowboys"	lst_team.AddItem	"Bears"	lst_team.AddItem	"Jers"	‘Next,	Load	the	combo	for	Position	cho	position.	AddItem	"Guard”	cho	position.AddItem
"Tackle™	cho	position.	AddItem	"Quarterback"	cho	position.	AddItem	“Receiver”	cho	position.	AddItem	"Centre™	cho	position.AddItem	"Running	back"	End	Sub	Private	sub	ch_go_Click{)	Labeli.Caption	=	cho_position.Text	_	ao",	"	€	let_team.	Text	End	Sub	42	|	P	a	g	e	As	you	can	see,	it	is	fairly	simple	to	load	the	ListBox	and	the	ComboBox	during	the
From_Load	event.	The	only	other	detail	to	note	is	that	the	order	in	which	the	items	appear	in	the	Combo	is	not	the	same	as	the	order	in	which	the	items	were	added.	That	is	intentional	-	it	is	done	with	the	Sorted	property	for	the	ComboBox.	It	can	also	be	done	for	the	ListBox.	DriveListBox,	DirListBox,	FileListBox	For	this	next	example	we	need	to
create	a	new	form,	Form2,	in	the	current	Project.	Specifications:	While	in	Form1,	the	Registration	form,	we	need	to	be	able	to	hit	a	button	which	will	call-	up	a	new	form,	the	DirList	form,	which	will	look	like	the	example	below.	This	form	will	allow	us	to	select	a	type	of	file	that	we	want	to	see	and	then	to	select	a	file,	in	a	directory,	in	a	drive	that	will
be	specified.	If	the	file	selected	is	an	executable,	we	will	run	the	file.	If	it	is	a	text	file	we	will	call-up	Notepad	to	edit	it,	and	if	it	is	a	graphics	file	we	will	call-up	the	image	editor.	In	fact,	this	allows	us	to	call	an	external	program	from	inside	a	form.	If,	for	example,	we	wish	to	edit	the	player's	picture	before	storing	it,	we	can	open	the	picture	file	with	the
image	editor,	change	it,	and	continue	with	the	rest	of	the	form.	There	are	3	new	controls	on	this	form,	plus	the	buttons	and	the	ListBox.	Since	you	almost	always	have	only	one	of	each	of	those	controls	on	the	form,	we	won't	bother	to	change	the	names	of	the	controls	in	this	example	-	we	keep	them	as:	Drive1,	Dir1,	and	File1.	The	control	that	shows
the	current	drive	is	called	a	DriveListBox.	The	name	of	the	active	drive	is	in	the	control's	Drive	property.	The	selected	drive	can	be	changed,	in	code,	by	writing:	Drive1.Drive	=	"D:",	for	example.	Don't	bother	looking	for	the	.Drive	property	in	the	Properties	window	for	Drive1	-	you	won't	find	it.	Same	with	Dir1.Path	and	List1.FileName.	That's	because
Drive	is	a	runtime	property.	That	is,	one	that	is	only	available	when	the	program	runs.	Makes	sense	when	you	think	about	it.	You	can	design	the	DriveListBox	to	have	the	size,	the	color	and	the	font	45	|	P	a	g	e		Whenever	we	change	the	Drive	selection	or	the	Directory	selection,	a	Change	event	is	generated.	When	the	Drive	changes,	the	Directory's
path	changes	and	when	the	Directory	changes,	the	list	of	files	changes.		When	you	click	on	the	Start	button	you	first	have	to	check	if	a	file	is	selected.	If	not,	issue	a	message.		The	Right()	function,	which	we	will	look	at	in	Lesson7,	checks	to	see	if	the	rightmost	character	of	the	filename	is	a	\.	If	it	is	it	means	that	the	file	is	in	the	root	directory.	If	it	isn't,
we	have	to	add	a	\	between	the	path	and	the	filename.		Based	on	the	type	of	file	selected,	we	execute	the	Shell	function	which	runs	an	executable	program.	vbNormalFocus	is	the	window	style	argument	that	tells	the	program	to	run	in	a	normal	window.		When	we	click	on	a	file	type,	the	Pattern	property	for	the	FieList	must	change.		A	double-click	on	a
filename	does	the	same	as	hitting	the	Start	button.		Remember,	we	called	this	Form	from	the	Registration	form.	When	we're	done	with	this,	we	want	to	close	it	and	go	back	to	the	calling	form.	The	Exit	button	does	an	Unload	of	the	current	form	but,	it	does	not	execute	an	End	statement	because	that	would	cause	the	Project	to	end.	This	final	section	of
code	is	in	the	Registration	form.	It	is	the	code	for	the	Viewer	button	which	calls	the	DirList	form.	The	only	thing	to	do	is	to	Load	the	form	using	its	FormName	(from	the	Name	property)	and	then	to	execute	its	Show	method.	The	argument	vbModeless	means	that	the	form	does	not	get	exclusive	focus.	The	opposite	of	vbModeless	is	vbModal.	A	modal
form	is	one	which	requires	action	from	the	user	before	it	can	be	closed.	Usually,	error	messages	are	modal	-	you	have	to	respond,	usually	by	hitting	the	OK	or	Cancel	button,	and	you	can't	click	on	another	form	to	send	this	one	to	the	background,	and	you	can't	close	it	with	the	close	box.	A	modeless	form	can	be	sent	to	the	background	and	it	can	be
closed	at	any	time.	46	|	P	a	g	e	5:	Menu	and	Debug	5.1	Creating	a	Menu	If	you've	worked	with	Windows	applications	before	you	have	worked	with	menus.	Every	Windows	application	has	one.	The	menu	gives	the	users	access	to	functions	that	are	not	defined	as	controls	(editing,	formatting,	etc)	and	also	repeats	certain	functions	that	are	coded	as
controls	(Exit	button,	for	example).	Menus	offer	a	variety	of	functionalities	to	define	the	application:	we	can	include	sub-menus,	checked	items,	enabled/disabled	functions,	toolbar	icons.	The	VB	IDE	that	you	are	using	certainly	displays	all	of	those	tools,	as	in	the	diagram	below.	For	this	lesson,	we	will	use	the	Registration	form	we	created	in	Lesson	5
and	we	will	add	a	menu	to	it.	The	easiest	way	to	create	a	menu	is	to	do	it	with	the	Application	wizard	when	creating	the	application.	But	since	we're	not	here	to	do	things	the	easy	way,	we'll	have	to	rough-it.	In	this	case,	roughing-it	is	not	much	harder.	We	use	the	Menu	Editor	that	can	be	found	in	the	Menu	bar	-->	Tools.	Using	the	Editor	is	fairly
obvious.	We	just	build	up	the	menu	bar	on	the	first	level	and	then,	we	add	sub-menus	using	the	arrow	keys	to	add	an	elipsis	before	the	captions.	Thus,	&File	is	on	the	menu	bar	and	...&Open	is	under	&File.	Items	can	be	inserted	anywhere	using	the	Insert	button.	You	may	have	noticed	the	use	of	the	ampersand	(&)	in	the	captions	(the	Caption	is	the
part	that	will	display	in	the	menu	bar,	not	the	name).	That	is	standard	Windows	practice.	It	creates	a	Hot-key,	meaning	a	function	that	can	be	called	from	the	keyboard	using	the	key.	Putting	an	&	before	a	letter	in	a	47	|	P	a	g	e	caption	makes	that	letter	the	hot-key	for	the	function;	will	call-up	File,	will	call-up	Edit,	and	so	on.	Just	make	sure	that	the
same	hot-key	is	not	used	for	2	functions	on	the	same	level.	In	the	menu	bar	for	VB	above,	note	that	is	used	for	File	but,	is	used	for	Format.	The	hot-	key	for	each	function	is	the	letter	underlined	so	there	should'nt	be	any	confusion.	The	other	consideration	when	creating	the	menu	is	to	give	each	menu	item	a	specific	name.	In	this	case	we	use	the	prefix
mnu_	to	identify	menu	items.	These	are	important	because	they	will	be	refered	to	in	code	and	it	should	be	clear	that	mnu_exit	is	the	Exit	function	in	the	menu	whereas	cb_exit	is	the	Exit	command	button.	You	can	run	the	application	at	any	time	while	you	create	the	menu,	just	to	verify	that	it	displays	correctly.	Of	course,	if	you	click	on	a	menu	item,
nothing	happens.	Just	like	controls,	menu	items	have	to	be	coded	to	work.	So,	we	go	to	the	code	window	and	write	the	code	for	each	of	the	menu	items	that	we	want	to	activate.	Fortunately,	some	of	it	is	automatic.	Clicking	on	a	menu	item	will	automatically	open	lower-	level	items,	if	there	are	any.	We	just	code	for	the	lowest-level	item.	For	example,
for	File-->Open--	>Viewer,	there	is	no	code	for	File,	nor	for	Open	but,	we	must	write	the	code	to	execute	for	when	Viewer	is	clicked.	For	this	example	we	will	code	a	few	simple	operations	to	show	how	it	is	done.	From	this	it	is	just	a	question	of	expanding	the	menu	to	display	more	functions.	50	|	P	a	g	e	Another	technique	to	learn	is	called	"error
trapping".	It	consists	in	intercepting	errors	that	can	occur	at	execution	rather	than	programming	mistakes,	although	not	providing	for	user	errors	can	be	considered	a	programming	mistake.	Let's	build	a	simple	example.	The	user	will	input	2	numbers,	a	numerator	and	a	denominator.	The	program	will	divide	the	numerator	by	the	denominator	and
display	the	result.	Easy	so	far.	However,	if	the	user	inputs	0	for	the	denominator,	the	program	crashes	because	programming	cannot	make	sense	of	division	by	zero.	So,	we	want	to	trap	the	error	and	process	it	before	it	displays	an	error	message	to	the	user.	We	will	use	the	On	Error	GoTo	...	statement.	This	tells	the	program	that	if	there	is	some	kind
of	run-time	error,	go	to	the	error-processing-routine	named.	We	have	to	create	a	line	label	to	identify	the	error	routine;	a	line	label	has	a	colon	at	the	end,	like	error_rtn:,	in	the	example.	At	the	same	time,	there	is	an	Err	object	created	and	it	contains,	among	other	things,	a	Number	property	that	will	identify	the	error.	For	example,	if	Err.Number	=	11,
the	error	was	a	division	by	zero;	Err.Number	=	6	represents	an	overflow	situation.	51	|	P	a	g	e	It	is	worth	noting	that	line	labels	in	code	do	not	end	processing	in	any	way.	When	the	logic	gets	to	a	line	label	it	keeps	on	going.	The	programmer	has	to	make	sure	that	the	processing	of	errors	in	the	error_rtn	is	not	done	automatically	every	cycle	(that	is
called	"falling	through"	the	next	routine	and	it's	a	common	error).	Manipulating	text	Whenever	you	are	entering	data,	creating	files	or	databases,	you	are	working	with	text	strings.	Text	strings	contain	characters	that	can	be	copied,	deleted,	cut	and	reassembled	but	they	also	have	important	visual	characteristics:	size,	color,	weight,	transparency,	etc.
In	this	lesson	we	will	look	at	different	ways	of	manipulating	those	text	strings.	String	functions	Here	is	a	list	of	the	basic	functions	that	work	with	strings:		Len(string):	returns	the	length	of	string,	the	number	of	characters	it	contains.		Left(string,	number):	returns	the	number	of	characters	specified	by	number	from	the	left	end	of	string.	52	|	P	a	g	e	
Right(string,	number):	returns	the	number	of	characters	specified	by	number	from	the	right	end	of	string.		Mid(string,	position,	number):	returns	the	number	of	characters	specified	by	number	starting	at	character	number	position	from	the	left	end	of	string.		InStr(string1,	string2):	returns	the	position	of	string2	in	string1	-	returns	0	if	string2	is	not
found	in	string1.		LTrim(string),	RTrim(string)	and	Trim(string):	returns	string	with	non-significant	spaces	removed	from	the	left,	the	right	or	both,	respectively.		LCase(string),	UCase(string):	returns	string	converted	to	lower-case	or	upper-case,	respectively.	Formatting	Numbers,	Dates	and	Times	The	Label	control	is	still	the	easiest	way	of	displaying
the	result	of	calculations.	Whatever	the	answer	is,	just	move	it	to	Label5.Caption	and	it	will	appear	on	the	form.	Unfortunately,	it	does	not	always	appear	the	way	you	want	to	see	it.	No	problem	if	the	result	is	a	string	but,	what	if	it	is	a	dollar	amount	or	a	date	of	some	kind.	That	will	require	some	formatting	of	the	result	before	displaying	it.	We	use	the
Format	function:	55	|	P	a	g	e	Currency	Thousands	separator,	two	digits	to	the	right	of	decimal	Fixed	Displays	at	least	one	digit	to	the	left	and	two	digits	to	the	right	of	decimal	Standard	Thousands	separator,	at	least	one	digit	to	the	left	and	two	digits	to	the	right	of	decimal	Percent	Multiplies	by	100,	add	percent	sign	to	the	right	General	Date	Display
determined	by	Control	panel	settings;	displays	date	and	time	Long	Date	Long	date	format	specified	for	system	Short	Date	Short	date	format	specified	for	system	Long	Time	Long	time	setting	specified	by	system;	includes	hours,	minutes,	seconds	Short	Time	Shows	hours	and	minutes	Dim	DateHired	As	Date	DateHired	=	"1995-10-25"	Label5.Caption	=
Format(DateHired,	"Long	Date")	returns:	October	25,	1995	Manipulating	blocks	of	text	The	TextBox	and	the	ComboBox	controls	contain	several	properties	which	will	allow	you	to	manipulate	blocks	of	text,	in	addition	to	single	characters.	If	you	have	to	input	a	large	quantity	of	text	in	a	TextBox,	for	example,	you	do	not	want	to	see	it	all	in	a	single	line.
There	are	2	properties	that	you	set	that	will	make	the	data	easier	to	see:		MultiLine	=	True	allows	you	to	have	several	lines	of	input,	all	separated	by	.		ScrollBars	=	2	-	Vertical	will	create	scrollbars,	useful	to	read	text.	56	|	P	a	g	e	Then	there	are	3	properties	to	work	with	a	block	of	selected	text	in	the	control:		SelStart	an	integer	number	identifying
the	start	of	selected	text,	the	position	of	the	first	character	in	the	block	-	starts	at	0.		SelLength	an	integer	number	identifying	the	number	of	characters	selected	in	the	block.		SelText	a	string	containing	the	selected	text.	Note	that	this	kind	of	manipulation	is	usually	done	with	the	mouse.	However,	you	do	not	have	to	code	for	the	mouse	events.	It	is
automatic	-	when	you	select	text	in	a	control,	the	appropriate	events,	MouseDown,	MouseUp	and	MouseMove,	are	triggered	by	the	control.	Useful	objects:	Screen	and	Clipboard	The	Screen	object	represents	the	complete	Windows	environment.	It	allows	access	to	all	Forms	and	Controls.	It	has	2	important	properties	that	we	need:		ActiveForm	returns
the	name	of	the	Form	currently	active.		ActiveControl	returns	the	name	of	the	Control	that	currently	has	focus.	In	the	example	that	follows	we	will	use	these	properties	to	avoid	having	to	name	the	form	and	the	control	in	code.	This	is	a	way	of	implementing	re-usability	of	code,	an	important	design	principle	-	we	can	write	code	that	can	be	re-used	in
many	applications	without	having	to	be	re-written.	The	Clipboard	object	is	the	system	clipboard	that	you	know	from	all	your	other	Windows	applications.	It	is	the	object	that	temporarily	stores	text	or	graphics	between	applications.	In	the	case	of	the	Clipboard	object,	it	has	3	important	methods	that	we	will	use:		Clear	empties	the	Clipboard.		SetText
puts	the	selected	text	into	the	Clipboard.		GetText	gets	the	contents	of	the	Clipboard.	57	|	P	a	g	e	Example	For	the	purposes	of	this	example,	we	will	use	the	Registration	Form	from	Lesson	5.	We	will	add	a	Comment	TextBox	to	the	form.	This	textbox	will	be	multiline,	with	a	vertical	scrollbar.	Then,	we	will	add	items	to	the	menu	to	allow	us	to	edit	the
text	entered	in	Comments.	We	want	to	be	able	to	Cut,	Copy,	Paste	and	Delete	blocks	of	text.	To	change	the	Menu,	we	again	call	upon	the	Menu	Editor.	We	add	the	new	functions	under	the	Edit	item.	To	insert	a	separator	bar,	just	put	a	single	hyphen	in	the	Caption	and	give	it	a	Name,	mnu_sep1,	for	example.	The	menu	should	look	like	this:	Then	we
code	the	menu	events.	Note	that	we	use	the	Screen	properties	exclusively	in	this	example.	Even	if	we	are	working	in	a	control	which	is	called	txt_comments,	there	is	nothing	in	the	code	that	refers	specifically	to	that	control.	We	can	copy	this	whole	section	to	any	form	in	any	application	and	it	will	work	without	a	hitch.	60	|	P	a	g	e	In	the	above	example
the	pictures	were	all	added	to	the	controls	at	design	time.	You	can	also	insert	or	remove	a	picture	at	run	time.	You	use	the	LoadPicture	function,	as	in:	pic_departmentlogo	=	LoadPicture("C:\Pictures\acctnglogo.bmp")	Removing	the	picture	is	done	with	the	LoadPicture	function	without	a	file	name:	pic_departmentlogo	=	LoadPicture	("")	Drawing
controls	There	are	2	controls	in	the	toolbox	which	allow	you	to	draw	directly	on	the	form	-	the	Line	control	and	the	Shape	control.	Both	are	easy	to	use	and	fairly	obvious.	The	main	properties	of	each	that	have	to	be	manipulated	are:	BorderColor	for	the	color	of	the	line	or	shape	and	BorderStyle	to	use	a	solid	or	dashed	line.	In	addition,	the	Shape
control	has:	Shape	for	rectangle,	circle,	etc.,	FillColor	and	FillStyle	to	determine	how	the	shape	will	be	filled	and	BackStyle	for	transparent	or	opaque.	61	|	P	a	g	e	Multimedia	Multimedia	refers	to	devices	other	than	the	screen	or	the	printer	to	play	sounds,	watch	videos	or	record	music.	This	is	done	through	the	use	of	the	Multimedia	control.	Don't
look	for	it	in	the	toolbox,	it's	not	there.	It	is	an	additional	control	that	you	must	load.	First,	create	anew	form	in	Project	Lesson7	and	call	it	"multimed.frm".	Then,	in	the	menu,	at	Project	-->	Components,	find	the	item	"Microsoft	Multimedia	Control	6.0"	and	check	the	box	next	to	it.	Hit	OK	and	that's	it.	The	Multimedia	control	should	now	appear	in	your
toolbox.	If	you	select	the	multimedia	control	and	put	it	down	on	the	form,	you	will	have	a	button	bar	like	all	the	ones	you've	seen	on	CD	players,	recorders,	etc.	In	the	DeviceType	property	you	specify	what	type	of	device	this	control	controls:	DeviceType	Device	CDAudio	CD	Audio	player	DAT	Digital	audio	tape	player	Overlay	Overlay	Scanner	Scanner
Vcr	Videotape	player	and	recorder	Videodisc	Videodisc	player	Other	Other	devices	not	specified	62	|	P	a	g	e	Example:	a	simple	CD	player	We	create	a	new	form	in	Lesson7	and	call	it	multimed.frm.	After	adding	the	Multimedia	control	to	the	toolbox,	we	put	a	MM	control	on	the	form.	Since	we	will	only	be	using	the	one	MM	control,	we'll	leave	its	name
as	MMControl1.	The	only	property	we	have	to	change	at	this	time	is	the	DeviceType,	to	tell	it	that	we	are	using	the	CD	player,	so	we	write	CDAudio	in	DeviceType.	We	add	a	few	labels	to	complete	the	form	and	we	get:	Now	we	have	to	write	the	code	to	operate	the	CD	player.	Before	we	start	to	write	the	code	there	are	a	few	things	to	know	about	the
MM	control.	There	is	a	Track	property	which	contains	the	number	of	the	current	track.	But	its	most	important	property	is	called	the	Command	property	and	it	can	take	on	several	values	that,	in	fact,	operate	the	device.	Command	value	Meaning	Open	Opens	the	device	Close	Closes	the	device	Eject	Ejects	the	CD	65	|	P	a	g	e	LESSON	8	-	Working	with
files	Storing	data	Data	comes	in	many	forms.	It	can	be	a	list	of	DVDs	you	own	and	want	to	keep	track	of,	the	description	of	all	the	online	college	courses	you	intend	to	take	or	even	the	movie	stars	you	intend	to	date!	In	the	previous	lessons,	you	have	learned	how	to	manipulate	the	VB	environment	to	produce	forms,	do	calculations,	edit	text	and	so	on.
However,	everything	you've	done	so	far	is	a	one-shot	deal.	Even	if	you	did	create	the	Payroll	form,	you	can	use	it	to	calculate	the	net	pay	for	any	number	of	employees	but,	you	can't	save	any	of	that	information.	That's	where	data	storage	comes	in.	There	are	many	ways	to	store	data	for	future	use.	The	most	popular	and	powerful	method	is	to	create	a
database.	But	that	can	get	quite	involved	and	it	does	require	a	certain	amount	of	analysis	knowledge	and	skill.	The	next	two	lessons	will	cover	how	to	create	and	use	databases	in	VB.	A	much	more	accessible	method	and	one	which	you	have	certainly	used	many	times	before,	is	to	create	a	data	file.	A	file	is	a	collection	of	data	on	a	given	subject,	stored
on	a	storage	medium,	usually	a	disk	or	CD.	There	are	executable	files,	usually	with	the	.EXE	extension,	library	files	(.DLL),	Word	document	files	(.DOC)	and	a	hundred	other	types.	Many	applications	call	for	data	to	be	stored	and	then	read	back	later	for	further	processing.	Think	of	a	simple	application:	an	Address	book	to	store	people's	names,
addresses	and	phone	numbers.	You	could	create	an	Address	book	database	and	indeed,	it	is	often	the	first	one	you	learn	how	to	do	in	database	courses.	However,	the	task	is	more	suited	to	data	file	processing.	You	just	want	to	create	a	form	to	input	names,	addresses	and	phone	numbers	and	then	you	want	to	store	all	the	information	entered	in	a	file	so
that	you	can	print	it	or	look-up	numbers	when	needed.	In	this	lesson	we	will	learn	how	to	create	our	own	files	to	store	and	retrieve	data.	66	|	P	a	g	e	Defining	new	terms		Record:	one	logical	section	of	a	file	that	holds	a	related	set	of	data.	If	the	file	contains	Student	information,	a	record	would	hold	the	information	on	one	student:	name,	address,
studentID,	etc.	If	there	are	5,000	students	registered,	the	file	contains	5,000	records.		Field:	part	of	a	record	that	defines	a	specific	information.	In	the	Student	record,	FirstName,	LastName,	StudentID,	are	fields.	The	field	is	the	lowest	element	in	the	file.	Even	if	the	information	consists	of	one	character,	Sex	is	M	or	F,	it	is	still	considered	a	separate
field.	The	field	is	the	equivalent	of	the	variable	-	we	call	it	a	variable	when	it	is	used	to	store	data	in	memory	and	call	it	a	field	when	it	stores	in	a	file.		I/O:	stands	for	Input/Output.	Whenever	you	work	with	a	file	you	have	to	have	ways	of	reading	data	from	the	file	(that's	Input)	and	ways	of	writing	data	to	the	file	(that's	Output).	I/O	operations	consist	of
all	those	commands	that	let	you	read	and	write	files.	Types	of	files	There	are	basically	three	types	of	files	you	can	work	with:		Sequential	file:	this	is	a	file	where	all	the	information	is	written	in	order	from	the	beginning	to	the	end.	To	access	a	given	record	you	have	to	read	all	the	records	stored	before	it.	It	is	in	fact	like	listening	to	a	tape	-	you	can	go
forward	or	back	but	you	can't	jump	directly	to	a	specific	song	on	the	tape.	In	fact,	in	the	old	days,	magnetic	tape	was	the	most	commonly	used	medium	to	store	data	and	all	files	were	organized	this	way.	Now,	it	is	still	useful	when	there	is	a	small	amount	of	data	to	store,	a	file	of	application	settings,	for	example.	It	can	even	be	of	use	when	there	is	a
large	amount	of	data	to	be	stored,	provided	it	all	has	to	be	processed	at	one	time,	eg:	a	file	of	invoices	to	produce	a	statement	at	month-end.		Random	file:	a	file	where	all	records	are	accessible	individually.	It	is	like	a	CD	where	you	can	jump	to	any	track.	This	is	useful	when	there	is	a	large	quantity	of	data	to	store	and	it	has	to	be	available	quickly:	you
have	to	know	if	a	part	is	in	stock	for	a	customer	who	is	on	the	phone;	the	program	doesn't	have	time	to	search	through	10,000	records	individually	to	locate	the	correct	one.	This	method	of	storage	became	popular	when	hard-disk	drives	were	developed.		Binary	file:	this	is	a	special,	compacted	form	of	the	random	file.	Data	is	stored	at	the	byte	level	and
you	can	read	and	write	individual	bytes	to	the	file.	This	makes	the	file	access	very	fast	and	efficient.	We	won't	be	covering	this	type	of	file	in	these	exercises.	If	you	need	to	find	out	more	about	it,	go	to	the	VB	Reference	Manual.	Opening	and	closing	files	To	begin	our	work	on	files	we	will	look	at	some	commands	that	are	common	to	both	Sequential	and
Random	files.	After	that	we	will	look	at	the	specific	processing	commands	for	each	type	of	file.	67	|	P	a	g	e	The	first	command	to	include	in	a	program	that	needs	to	work	with	files	is	the	Open	command.	Open	assigns	the	file	to	a	numbered	file	handle,	also	called	a	channel,	or	sometimes	a	buffer.	The	format	of	the	command	is:	Open	"Filename"	[For
Mode]	[AccessRestriction]	[LockType]	As	#FileNumber	For	example:	Open	"MyFile.txt"	For	Random	Read	Lock	Read	As	#1		MyFile.txt	is	the	name	of	the	file	in	the	disk	directory.		For	Random	means	that	access	to	the	records	can	be	random;	if	access	is	not	specified,	For	random	is	the	default	value.		Read	restricts	access	to	Read-only	-	the	user
cannot	write	or	change	the	records.		Lock	Read	means	that	only	the	person	reading	the	record	can	have	access	to	it	at	any	given	time;	it	is	not	shared	among	users.		As	#1	means	the	file	is	assigned	file	handle	#1;	for	all	processing	in	the	program,	it	will	always	be	refered	to	as	#1,	not	its	Filename.	AccessRestriction	and	LockType	are	parameters	that
are	used	mostly	with	files	in	a	network	environment.	You	use	them	when	you	want	the	file	to	be	shared	or	not,	and	you	want	to	prevent	certain	users	from	changing	or	deleting	things	that	they	shouldn't.	For	the	rest	of	this	lesson	we	will	not	be	using	those	parameters.	Access	Mode	For	Mode	in	the	Open	statement	indicates	how	the	file	will	be	used.
There	are	five	access	modes:		Input:	open	for	sequential	input;	the	file	will	be	read	sequentially	starting	at	the	beginning.		Output:	open	for	sequential	output;	records	will	be	written	sequentially	starting	at	the	beginning;	if	the	file	does	not	exist,	it	is	created;	if	it	does	exist,	it	is	overwritten.		Random:	open	for	random	read	and	write;	any	specific
record	can	be	accessed.		Append:	sequential	output	to	the	end	of	an	existing	file;	if	the	file	does	not	exist	it	is	created;	it	does	not	overwrite	the	file.		Binary:	open	for	binary	read	and	write;	access	is	at	byte	level.	If	access	mode	is	not	specified	in	the	Open	statement,	For	Random	is	used	by	default.	Once	processing	is	finished,	you	need	to	Close	all	the
files	that	have	been	opened.	The	format	for	the	Close	statement	is:	Close	#FileNumber1	[,	#FileNumber2]	...	70	|	P	a	g	e	File	design	It	has	been	determined	that	the	file	will	store	7	fields	of	information.	First	and	last	names	could	be	together	and	we	could	have	a	work	phone	number	but,	the	Analyst	(who	gets	paid	big	bucks	to	think	this	stuff	up)	has
determined	that	7	is	what	is	required.	It	has	also	been	decided	that	the	file	will	be	called	"AdrsBook.txt"	and	will	be	stored	in	"C:\VBApps"	-	we	need	to	know	this	for	the	Open	statement.	It	must	also	be	determined,	before	we	start	to	code,	what	the	File	mode	is	going	to	be	when	we	output	to	the	file.	We	could	use	"Output"	but	that	would	mean	that
every	time	that	we	want	to	add	a	new	listing,	we	wipe-out	the	file.	Not	very	practical!	Therefore,	we	will	use	"Append"	so	that	all	new	entries	are	added	to	the	end	of	the	existing	file.	Finally,	once	the	controls	are	in	place	on	the	form,	we	have	to	finalize	the	order	in	which	we	Tab	through	them	when	working	from	the	keyboard.	That	is	called	the	Tab
order.	To	set	the	tab	order,	we	use	the	TabIndex	property	for	each	control.	It	starts	at	0	and	goes	up	for	every	control	in	order.	When	the	form	opens,	the	control	with	TabIndex=0	gets	focus;	when	you	tab	from	that,	focus	goes	to	TabIndex=1,	and	so	on.	Controls	that	don't	get	focus	-	Labels,	Pictures,	etc.	-	do	have	a	TabIndex	but	their	TabStop
property	is	set	to	False.	If	you	don't	want	Tab	to	stop	on	a	control,	set	its	TabStop	to	False.	Here	is	what	the	Sequential	Output	form	will	look	like	when	we	use	it:	71	|	P	a	g	e	Once	the	file	has	been	created	we	can	use	Notepad	to	look	at	it.	Notice	that	the	last	entry,	the	one	on	the	form	above,	is	not	yet	in	the	file.	It	gets	written	only	when	you	hit	the
Write	button.	Each	field	entered	is	stored	as	a	separate	line	in	the	file.	When	we	read	them,	we	read	in	the	same	order	as	that	in	which	they	were	written.	72	|	P	a	g	e	Creating	the	Sequential	Output	form	The	form	SAdresOut	is	used	to	capture	data	from	the	user	and	then	output	that	data	to	the	AdrsBook.txt	file.	The	design	of	the	form	is	what	you	see
in	the	diagram	above.	As	you	can	see,	we	need	7	TextBox	controls	to	capture	the	7	fields.	To	simplify	the	code,	we	will	use	a	technique	we	haven't	used	before	in	these	lessons:	the	Control	Array.	You	may	have	seen	that	come	up	before	if	you	tried	to	copy	and	paste	controls.	What	we	do	is:	create	one	TextBox	control,	give	it	a	name	-	we	call	it
"txt_field"	-,	and	then	copy	that	control	and	paste	it	6	times	on	the	form.	When	you	paste	a	control,	since	it	has	the	same	name	as	the	existing	one,	the	editor	asks	whether	you	want	to	give	it	a	new	name	or	create	a	control	array.	In	this	case	we	tell	it	to	create	the	control	array.	This	means	that,	instead	of	7	different	TextBoxes,	we	will	have	an	array	of
TextBoxes,	named	txt_field(0)	to	txt_field(6).	As	you	can	see	from	the	code,	this	allows	us	to	use	For	...	Next	loops	to	do	things	like	clear	the	controls	and	write	to	the	file.	The	Cancel	button	simply	clears	all	the	TextBoxes	and	does	not	executes	a	Write	operation.	The	Exit	button	closes	the	open	files	and	unloads	the	form	which	returns	us	automatically
to	the	Menu	form.	There	is	no	End	statement,	as	that	would	cause	the	program	to	end.	The	code	to	write	to	the	file	is	fairly	straightforward.	Once	information	has	been	entered	into	the	7	TextBoxes,	we	use	a	FOR	...	NEXT	loop	to	execute	the	Write	command.	The	reason	for	this	is	that	the	Write	command	outputs	only	one	field	at	a	time.	So,	we	have	to
do	7	writes	to	output	the	whole	record.	After	the	TextBoxes	have	been	written-out,	we	clear	them	to	create	the	next	record.	75	|	P	a	g	e	Get	#FileNumber,	[RecordNumber],	Variable	If	RecordNumber	is	omitted,	next	record	is	read	from	the	file.	Creating	the	Random	file	To	create	the	PhoneBook	file,	we	will	need	a	new	form	which	is	just	a	copy	of	the
SAdresOut	form	with	the	additional	Person	number	TextBox,	which	is	in	fact	the	record	number.	Then	we'll	write	the	code,	making	use	of	the	user-defined	data	type	"PhoneRec"	described	earlier.	This	form,	"RAdresOut",	obtains	the	next	record	number	from	the	file,	accepts	input	from	the	user	and	writes-	the	record	out	to	the	file.	76|Page	Option
Explicit	Dim	OutRec	As	PhoneRec	Dim	position	As	Integer	Dim	lastrecord	As	Integer	Private	Sub	Form	Load(}	‘Wake	sure	all	TextBoxes	are	blank	Dim	intCnt	As	Integer	For	intCnt	=	0	To	7	txt_fieldtintCnt).Text	="	Next	intCnt	‘To	keep	this	example	separate	from	‘the	Sequential	file	create	a	new	file.	Open	"C:\VBApps\PhoneBook.txt"	For	Random	as
#1	‘Read	the	file	until	the	end	‘Get	without	position	is	a	"Read	next"	Do	While	Not	EOF	(1)	Get	#1,	,	OutRec	Loop	'Seek(1)	ceturns	number	of	current	record,	‘which	is	End	so,	subtract	1	to	get	last	valid.	lastrecord	=	Seek(1)	-	1	position	=	lastrecord	End	Sub	77	|	P	a	g	e	To	read	records	from	the	file,	we	have	to	specify	a	record	number.	This	number	is
accepted	into	the	Person	number	TextBox	and	then	used	to	locate	the	appropriate	record	in	the	file.	The	error-trapping	routine	is	useful	in	this	procedure	because	you	are	almost	certain	to	encounter	the	"Reading	past	End-of-file"	error	when	you	enter	a	Person	number	that	does	not	exist.	80	|	P	a	g	e	Version	problems	VB	6	and	Access	2000	have
compatibility	problems.	Because	VB	6	was	released	before	Access	2000,	it	does	not	normally	recognize	the	Access	2000	format.	In	the	example	that	follows,	look	at	the	Connect	property	of	the	Data	control.	If	you	don't	have	Access	2000	in	the	choices	when	you	open	"Connect",	you	have	an	older	version	of	VB.	If	you	try	to	connect	to	an	Access	2000
database,	you	will	get	a	message	saying	that	you	have	an	"Unrecognized	database	format".	If	you	have	an	older	version	of	VB6,	you	will	have	to	get	the	fix	for	it.	You	may	be	aware	that	Microsoft	regularly	publish	upgrades	to	their	software	products	(not	that	they	admit	that	there	are	problems	with	them!).	Those	upgrades	are	called	Service	Packs.
Right	now,	Visual	Studio	(which	includes	Visual	Basic)	is	at	Service	Pack	5.	By	the	time	you	read	this	that	may	have	changed.	So,	to	fix	your	compatibility	problem	you	will	have	to	download	the	latest	Visual	Studio	Service	Pack	from	Microsoft.	There	is	a	quick	fix	to	the	problem,	which	is	what	we've	done	here	to	save	you	the	trouble	of	having	to
download.	You	can	convert	your	Access	2000	database	to	Access	97	and	use	your	old	VB.	To	do	that	in	Access	2000,	go	to	Tools	-->Database	utilities	-->Convert	and	that	will	do	the	trick	until	you	have	the	time	to	upgrade	VB.	This	will	also	come	in	handy	later	when	we	look	at	a	VB	Add-in	called	Visual	Data	Manager.	Unfortunately,	that	Add-in	does

not	work	at	all	with	Access	2000,	even	with	the	VB	Service	Pack.	If	you	want	to	use	it	you	will	have	to	convert	the	database.	The	Data	Control	To	begin	the	application,	we	will	first	create	a	new	form	for	Projects	maintenance:	ProjMaint.	The	first	control	we	will	place	on	the	form,	once	we've	set	the	basic	form	properties	and	saved	it,	is	called	the	Data
Control.	It	is	the	object	which	links	a	form	to	a	database	and	allows	you	to	access	the	fields	in	the	tables	making	up	the	database.	It's	called	Data	in	the	Toolbox.	VB	provides	other	objects	that	allow	you	to	link	to	databases.	ADO	(ActiveX	Data	Objects)	are	certainly	more	powerful	and	more	efficient	than	the	Data	Control.	However,	they	do	require	a	lot
more	coding	and	are	more	difficult	to	implement.	Also,	they	are	not	available	in	the	Standard	Edition	of	VB,	only	in	the	Professional	and	Enterprise	Editions.	In	simple	applications,	the	Data	Control,	slow	as	it	is,	gives	you	a	tool	that	is	easy	to	implement	and	will	provide	most	of	the	functionality	you	need.	81	|	P	a	g	e	The	arrow	buttons	on	the	control
are	used	to	navigate	through	the	database	records:	First	record	and	Previous	Next	and	Last	record	The	buttons	correspond	to	4	methods	of	the	DC	which	you	can	use	when	you	have	to	navigate	using	code.	They	are:	MoveFirst	MovePrevious	MoveNext	MoveLast	Let's	look	at	the	important	properties	of	the	Data	Control:		Name:	the	name	to	use	in
code	-	Data1	is	default	-	eventually	we'll	have	several	data	controls	on	the	form	-	we'll	call	this	one	dta_proj.		Connect:	the	kind	of	database	-	in	this	case	it's	Access	-	could	be	Foxpro,	dBaseIV,	etc.		DatabaseName:	the	name	and	path	of	the	database	the	control	is	connected	to.		RecordSource:	the	name	of	the	database	table	being	used.	82	|	P	a	g	e	
BOFAction	and	EOFAction:	action	to	take	when	trying	to	read	before	the	beginning	of	file	or	past	the	end	of	file	-	we'll	look	at	those	later.		Recordset:	this	is	a	run	time	property,	and	it's	an	important	one	-	it	represents	the	result	of	the	query	executed	to	the	database	-	it	contains	all	the	records	required	by	this	Data	Control	-	when	you	navigate	through
the	database,	you	are	actually	navigating	through	the	recordset,	which	is	then	mapped	back	to	the	database	-	that	is	why	the	methods	of	the	Data	Control	refer	to	the	Recordset	property.	Next	we	add	the	controls	needed	to	look	at	the	fields	in	the	records.	In	many	instances	we	will	need	to	make	changes	to	the	data.	Therefore,	we'll	use	a	TextBox	for
each	of	the	fields	so	that	we	can	both	diaplay	and	enter	data	as	needed.	Each	TextBox	will	be	a	bound	control,	meaning	that	it	is	bound	or	tied	to	a	specific	field	from	the	database.	When	we	navigate	through	the	database	using	the	arrow	buttons	the	content	of	each	TextBox	will	always	reflect	the	content	of	the	current	field.	To	bind	the	control	to	the
database	field	we	use	its	Data	properties:		DataSource	is	the	name	of	the	Data	Control	-	remember	that	the	DC	specifies	the	name	of	the	database	to	use	and	the	name	of	the	table	to	access	-	tip:	enter	this	one	before	the	DataField.		DataField	is	the	name	of	the	field	to	bind	-	that	field	is	selected	from	the	content	of	the	table.	Top	85	|	P	a	g	e	validation.
If	there	is	an	error,	you	evoke	the	SetFocus	method	to	put	focus	back	to	the	control	with	the	error.	Finding	a	specific	record	When	you	navigate	with	the	arrow	buttons	or	the	Move...	methods	you	are	necessarily	moving	one	record	at	a	time.	Very	often	there	is	a	need	to	access	a	specific	record	in	the	database.	For	example,	it	might	be	to	change	the
ending-date	for	the	project	called	"XYZ	Corp.	Payroll	System".	In	this	example	we	assume	that	the	search	will	be	conducted	on	Project	title.	It	could	be	on	Number	or	End-date	if	necessary	and	it	would	just	involve	minor	changes	to	the	code.	We	also	assume	that	the	user	does	not	want	to	enter	the	full	project	title	and	will	only	input	the	first	few
characters;	we	will	therefore	make	use	of	the	"Like"	operator	to	match	the	recordset	to	the	search	string.	First,	we	create	a	new	TextBox,	called	txt_findTitle,	to	enter	the	search	string.	We	will	give	this	TextBox	the	TabIndex	0	because	we	want	it	to	be	the	first	control	read	when	we	look	at	a	record.	As	soon	as	we	move	off	the	TextBox,	the	LostFocus
event	is	triggered	and	checks	whether	the	user	has	entered	a	search	string	or	not.	If	there	is	no	input	into	the	search	string,	the	user	can	work	with	the	current	record	in	the	form.	If	there	is	a	search	string	specified,	the	appropriate	record	will	be	loaded	into	the	form.	The	FindFirst	method	of	the	DC	will	locate	the	first	occurence	in	the	recordset
matching	the	"content"	parameter.	If	there	are	more	than	one	records	that	match,	the	user	then	navigates	forward	using	the	arrows.	The	format	of	the	FindFirst	method	is:	86	|	P	a	g	e	DataControl.Recordset.FindFirst	"fieldname	=	'searchstring'"	If	the	fieldname	contains	a	string	value,	you	have	to	use	single	quotes	to	name	the	searchstring;	you	can
use	the	other	comparison	operators	in	place	of	the	=.	This	technique	can	be	adapted	to	search	any	field	in	the	recordset	for	a	specific	record.	There	are	also	FindNext,	FindPrevious	and	FindLast	methods	for	the	Data	Control	recordset.	LESSON	10	-	Working	with	a	database	...part	2	Tuesday,	August	02,	2011	87	|	P	a	g	e	Using	multiple	tables	Our
ProjectMgt	application	contains	an	Employee	table	and	a	Department	table	linked	through	the	employee's	department	number.	Now,	if	we	create	a	form	for	Employee	maintenance	using	the	same	technique	we	used	in	the	previous	lesson,	we	can	access	all	fields	in	the	Employee	table	using	one	data	control,	Data1.	This	is	what	the	basic	form	will	look
like,	before	we	get	to	put	in	the	usual	improvements:	90	|	P	a	g	e	Now	to	get	the	list	right.	First,	we	delete	the	department_number	TextBox.	Then	we	add	a	DBList.	Now	we	specify	the	DBList1	properties.	Careful!	This	is	where	most	people	hit	a	snag!	The	Data	properties:	these	specify	where	the	data	entered	will	be	stored.	We	are	in	the	Employee
table.	That's	Data1.	So,	the	data	entered	will	go	into	DataSource:	Data1	and	the	field	into	which	it	is	going	is	DataField:	e-Dept.	The	List	properties:	these	tell	the	control	where	to	get	the	information	to	show	in	the	list.	Since	we	want	it	from	the	Department	table,	we	specify	RowSource:	Data2.	What	will	appear	in	the	list	is	the	Department	name	so	we
choose	ListField:	d_Name.	Finally,	there	has	to	be	a	link	between	Data2	and	Data1.	That	is	always	the	field	which	is	the	primary	key	in	the	list	table	and	that	is	the	BoundColumn:	d_Number.	91	|	P	a	g	e	And	once	everything	is	cleaned-up,	the	Data2	control	is	hidden,	we	get	the	final	result:	Pare	Turse	Systems	Analysis	Network	support	G3000	3120
Employee	table	92|	Page

watch	tron	legacy	full	movie	
160704e6770abf---90240935742.pdf	
71731294513.pdf	
calendrier	juillet	aout	2019	pdf	
nida	audition	monologues	pdf	
honda	shadow	spirit	1100	bobber	kit	
160b8844a3ce99---dudozofufudowajitogajones.pdf	
51468586022.pdf	
how	to	screen	mirror	ipad	to	vizio	
160963faf7a5c4---84397267597.pdf	
gateway	2nd	edition	b1+	student's	book	answers	
pink	full	movie	download	720p	movies	counter	
95252748374.pdf	
radha	krishna	ringtone	download	mp3	star	bharat	best	ringtone	2019	
57368996448.pdf	
general	knowledge	2020	pdf	arihant	
160b7999230e8e---28429740012.pdf	
how	to	tell	what	kind	of	intermolecular	forces	are	present	
160bfa84bb02db---fezumudi.pdf	
1249502399.pdf	
731962288.pdf	
rent	receipt	format	in	excel	for	income	tax	purpose	india	
read	overlord	light	novel	pdf	
20210616_204654.pdf	

http://prplus4u.com/ckupload/files/38816337194.pdf
http://www.whirlpool-beachcomber.at/wp-content/plugins/formcraft/file-upload/server/content/files/160704e6770abf---90240935742.pdf
https://www.federatedlighting.com/wp-content/plugins/super-forms/uploads/php/files/a7bb5d41fd066aada06647211a6aa23a/71731294513.pdf
http://www.peopleoftheheath.com/wp-content/plugins/formcraft/file-upload/server/content/files/1606c8b831a576---vokezolupikaselaxugagefu.pdf
http://etkindenetim.com/resimler/files/lugisu.pdf
https://bodwellassociates.com/wp-content/plugins/super-forms/uploads/php/files/09a65ced390130c448422bda0b37ae0f/53847930529.pdf
https://aquaticlandscape.com/wp-content/plugins/formcraft/file-upload/server/content/files/160b8844a3ce99---dudozofufudowajitogajones.pdf
https://www.spreefahrten-berlin.de/wp-content/plugins/super-forms/uploads/php/files/q5uv31riqk1tr5tj6tngq3p6ii/51468586022.pdf
http://tamilannuaire.com/var/www/vhosts/vps296430.ovh.net/tamilannuaire.com/images/file/78970863846.pdf
https://laneopx.com/wp-content/plugins/formcraft/file-upload/server/content/files/160963faf7a5c4---84397267597.pdf
https://gulertrafik.com/wp-content/plugins/super-forms/uploads/php/files/vovqngvrilrjtr73n4qun3q21m/lakasitudamijabitadaxu.pdf
http://georgekoldun.com/var/upload/file/76619002965.pdf
https://e-lightingcontrols.com/wp-content/plugins/super-forms/uploads/php/files/45aa3a0241f1ea126ecffabbce7d8914/95252748374.pdf
http://maxidmum.com/images/upload/fck/file/fiduxofirezazipat.pdf
https://www.cr-sdc.org/wp-content/plugins/super-forms/uploads/php/files/85dd807ab0c7cb4c69dde72352f4abb6/57368996448.pdf
http://easternhoteljeju.com/FileData/ckfinder/files/20210613_0B95BA565006A13F.pdf
http://aberdeeneyes.co.uk/wp-content/plugins/formcraft/file-upload/server/content/files/160b7999230e8e---28429740012.pdf
https://teyadegitimvideo.com/calisma2/files/uploads/48988484639.pdf
http://trainternational.in/wp-content/plugins/formcraft/file-upload/server/content/files/160bfa84bb02db---fezumudi.pdf
https://alshamiltrading.com/alshamilfiles/file/1249502399.pdf
http://kistours.hu/userfiles/file/731962288.pdf
https://ehblending.com/wp-content/plugins/super-forms/uploads/php/files/73477f62fbc4a7699790a3455e2881a2/39917674408.pdf
https://diedacorporation.net/freesiafiles/file/xezovasaforev.pdf
http://wuxihemei.com/ckfinder/userfiles/files/20210616_204654.pdf

